Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 60
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Int J Mol Sci ; 25(5)2024 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-38473721

RESUMEN

Our study highlighted the immune changes by pro-inflammatory biomarkers in the gut-liver-axis-linked ROS-cell death mechanisms in chronic and acute inflammations when gut cells are exposed to endotoxins in patients with hepatic cirrhosis or steatosis. In duodenal tissue samples, gut immune barrier dysfunction was analyzed by pro-inflammatory biomarker expressions, oxidative stress, and cell death by flow cytometry methods. A significant innate and adaptative immune system reaction was observed as result of persistent endotoxin action in gut cells in chronic inflammation tissue samples recovered from hepatic cirrhosis with the A-B child stage. Instead, in patients with C child stage of HC, the endotoxin tolerance was installed in cells, characterized by T lymphocyte silent activation and increased Th1 cytokines expression. Interesting mechanisms of ROS-cell death were observed in chronic and acute inflammation samples when gut cells were exposed to endotoxins and immune changes in the gut-liver axis. Late apoptosis represents the chronic response to injury induction by the gut immune barrier dysfunction, oxidative stress, and liver-dysregulated barrier. Meanwhile, necrosis represents an acute and severe reply to endotoxin action on gut cells when the immune system reacts to pro-inflammatory Th1 and Th2 cytokines releasing, offering protection against PAMPs/DAMPs by monocytes and T lymphocyte activation. Flow cytometric analysis of pro-inflammatory biomarkers linked to oxidative stress-cell death mechanisms shown in our study recommends laboratory techniques in diagnostic fields.


Asunto(s)
Endotoxinas , Inflamación , Niño , Humanos , Endotoxinas/metabolismo , Especies Reactivas de Oxígeno , Cirrosis Hepática , Apoptosis , Citocinas , Biomarcadores
2.
J Pers Med ; 13(11)2023 Oct 26.
Artículo en Inglés | MEDLINE | ID: mdl-38003854

RESUMEN

(1) Background: Human cytomegalovirus (CMV) infection is one of the most frequent opportunistic infections in immunosuppressed patients. Romania has one of the highest incidences of patients living with human immunodeficiency virus (HIV) which determines an immunosuppressive state. The aim of this study was to establish the prevalence of CMV infection among women living with HIV in Southeastern Romania and also to evaluate and correlate antiretroviral therapy (ART) with CD4 level and CMV disease evolution. (2) Methods: Seventy women living with HIV from Southeastern Romania were screened for CMV infection using antigen quantification. Of these, 50 were included in the study. First, the patients filled out a questionnaire regarding social conditions and other associated diseases. Then, we explored the statistical correlations between the data and HIV status, CD4+ cell counts, viral load, and antiretroviral therapy (ART). (3) Results: Median age of the patients was 33 years. Twenty-nine cases were diagnosed with HIV after sexual life beginning and 21 before. Most of the patients had a CD4 level over 200 cells/µL. ART duration in the CD4 under 200 cells/µL group was a bit longer than that in the CD4 over 200 cells/µL group. Forty-one patients had undetectable viremia. CD4 average value in the lot of patients with undetectable viremia was 704.71 cells/µL and in the lot with detectable viremia was 452.44 cells/µL. Viremia values correlated negatively with CD4 level. A positive correlation between IgG CMV values and ART therapy length was identified. A negative significant correlation between values of IgG CMV and values of CD4 was identified. CD4 value correlated negatively with IgG CMV values and with CMV avidity. (4) Conclusions: IgG CMV values had a weak positive correlation with ART therapy length, and a negative statistically significant correlation with values of CD4. CMV avidity has a negative correlation with CD4 value.

3.
Molecules ; 28(11)2023 Jun 04.
Artículo en Inglés | MEDLINE | ID: mdl-37299022

RESUMEN

The aim of this work is to highlight the influence of blends based on TiO2 nanoparticles and reduced graphene oxide (RGO) on the photodegradation of acetaminophen (AC). To this end, the catalysts of TiO2/RGO blends with RGO sheet concentrations equal 5, 10, and 20 wt. % were prepared by the solid-state interaction of the two constituents. The preferential adsorption of TiO2 particles onto the RGO sheets' surfaces via the water molecules on the TiO2 particle surface was demonstrated by FTIR spectroscopy. This adsorption process induced an increase in the disordered state of the RGO sheets in the presence of the TiO2 particles, as highlighted by Raman scattering and scanning electron microscopy (SEM). The novelty of this work lies in the demonstration that TiO2/RGO mixtures, obtained by the solid-phase interaction of the two constituents, allow an acetaminophen removal of up to 95.18% after 100 min of UV irradiation. This TiO2/RGO catalyst induced a higher photodegradation efficiency of AC than TiO2 due to the presence of RGO sheets, which acted as a capture agent for the photogenerated electrons of TiO2, hindering the electron-hole recombination. The reaction kinetics of AC aqueous solutions containing TiO2/RGO blends followed a complex first-order kinetic model. Another novelty of this work is the demonstration of the ability of PVC membranes modified with Au nanoparticles to act both as filters for the removal of TiO2/RGO blends after AC photodegradation and as potential SERS supports, which illustrate the vibrational properties of the reused catalyst. The reuse of the TiO2/RGO blends after the first cycle of AC photodegradation indicated their suitable stability during the five cycles of pharmaceutical compound photodegradation.


Asunto(s)
Grafito , Nanopartículas del Metal , Acetaminofén , Óxidos/química , Oro , Grafito/química , Titanio/química , Agua
4.
J Gastrointestin Liver Dis ; 32(1): 30-38, 2023 03 31.
Artículo en Inglés | MEDLINE | ID: mdl-37004230

RESUMEN

BACKGROUND AND AIMS: MicroRNAs (miR) have altered expression in multiple autoimmune disorders including inflammatory bowel disease. The aim of the study was to assess the tissue and circulating miR-31, miR-200b, and miR-200c expression levels as potential biomarkers for intestinal disease activity in patients with Crohn's disease (CD). METHODS: The study included 45 patients with histopathological confirmed CD and active disease (defined as fecal calprotectin >50 µg/g and Simple Endoscopic Score (SES) of CD >3), and 21 subjects as controls for the validation cohort. Demographic and clinical data, biomarkers (fecal calprotectin), endoscopy data, the expression levels of miR-31, miR-200b, and miR-200c in tissue and serum were assessed (by RT-PCR). Receiver operating characteristic analysis was performed to assess the miR-31, miR-200b, and miR-200c expression levels as potential biomarkers for active CD. RESULTS: Mean fecal calprotectin was 1540±890 µg/g. Mean SES-CD was 8.9±4.2. Tissue and circulating miR- 31 were significantly correlated with fecal calprotectin (r=0.81, r=0.83, p<0.01) and with SES-CD (r=0.82, r=0.79, p<0.01). The expression level of miR-31 was significantly upregulated in CD tissue cases compared to the control tissue samples (6.24±1.57 vs. 3.70±1.44; p <0.01). Similarly, serum miR-31 expression levels in CD patients were significantly upregulated compared to the control serum samples (0.78±0.42 vs. -2.07±1.00; p<0.01). The expression levels of tissue miR-200b and miR-200c were significantly upregulated in CD tissue cases compared to the control tissue samples (-5.25±0.93 vs. -4.69±0.80, p=0.03 for miR-200b, and -0.86±0.96 vs. 0.39±0.66, p<0.01 for miR-200c). Similarly, serum miR-200b and miR-200c expression levels in CD patients were significantly upregulated compared to the control serum samples (p < 0.05). Receiver operating characteristic analysis revealed that the expression levels of the selected miRNAs could help to discriminate active CD patients from healthy controls with very good specificity and sensitivity. CONCLUSIONS: Tissue and circulating miR-31, miR-200b, and miR-200c reflect disease activity in CD patients and can be used as biomarkers for active disease.


Asunto(s)
MicroARN Circulante , Enfermedad de Crohn , MicroARNs , Humanos , MicroARN Circulante/genética , Enfermedad de Crohn/diagnóstico , Enfermedad de Crohn/genética , MicroARNs/genética , Biomarcadores , Complejo de Antígeno L1 de Leucocito
5.
Pharmaceutics ; 15(4)2023 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-37111781

RESUMEN

Novel biomaterials with promising bone regeneration potential, derived from rich, renewable, and cheap sources, are reported. Thus, thin films were synthesized from marine-derived (i.e., from fish bones and seashells) hydroxyapatite (MdHA) by pulsed laser deposition (PLD) technique. Besides the physical-chemical and mechanical investigations, the deposited thin films were also evaluated in vitro using dedicated cytocompatibility and antimicrobial assays. The morphological examination of MdHA films revealed the fabrication of rough surfaces, which were shown to favor good cell adhesion, and furthermore could foster the in-situ anchorage of implants. The strong hydrophilic behavior of the thin films was evidenced by contact angle (CA) measurements, with values in the range of 15-18°. The inferred bonding strength adherence values were superior (i.e., ~49 MPa) to the threshold established by ISO regulation for high-load implant coatings. After immersion in biological fluids, the growth of an apatite-based layer was noted, which indicated the good mineralization capacity of the MdHA films. All PLD films exhibited low cytotoxicity on osteoblast, fibroblast, and epithelial cells. Moreover, a persistent protective effect against bacterial and fungal colonization (i.e., 1- to 3-log reduction of E. coli, E. faecalis, and C. albicans growth) was demonstrated after 48 h of incubation, with respect to the Ti control. The good cytocompatibility and effective antimicrobial activity, along with the reduced fabrication costs from sustainable sources (available in large quantities), should, therefore, recommend the MdHA materials proposed herein as innovative and viable solutions for the development of novel coatings for metallic dental implants.

6.
Heliyon ; 9(3): e13849, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36895402

RESUMEN

Background: Based on the current configuration of the International Thermonuclear Experimental Reactor, tungsten (W) was chosen as the armour material. Nevertheless, during operation, the expected power and temperature of plasma can trigger the formation of W dust in the plasma chamber. According to the scenario for a Loss Of Vacuum Accident (LOVA), in the case of confinement failure dust is released, which can lead to occupational or accidental exposure. Methods: For a first evidence of potential risks, fusion devices relevant W dust has been produced on purpose, using a magnetron sputtering gas aggregation source. We aimed to assess the in vitro cytotoxicity of synthesized tungsten nanoparticles (W-NPs) with diameters of 30 and 100 nm, on human BJ fibroblasts. That was systematically investigated using different cytotoxic endpoints (metabolic activity, cellular ATP, AK release and caspase-3/7 activity) and by direct observation with optical and scanning electron microscopy. Results: Increasing concentrations of W-NPs of both sizes induced cell viability decrease, but the effect was significantly higher for large W-NPs, starting from 200 µg/mL. In direct correlation with the effect on the cell membrane integrity, high concentrations of large W-NPs appear to increase AK release in the first 24 h of treatment. On the other hand, activation of the cellular caspase 3/7 was found significantly increased after 16 h of treatment solely for low concentrations of small W-NPs. SEM images revealed an increased tendency of agglomeration of small W-NPs in liquid medium, but no major differences in cells development and morphology were observed after treatment. An apparent internalization of nanoparticles under the cell membrane was also identified. Conclusion: These results provide evidence for different toxicological outputs identified as mechanistic responses of BJ fibroblasts to different sizes of W-NPs, indicating also that small W-NPs (30 nm) display lower cytotoxicity compared to larger ones (100 nm).

7.
J Pers Med ; 13(2)2023 Jan 27.
Artículo en Inglés | MEDLINE | ID: mdl-36836455

RESUMEN

(1) Background: Because melanoma is an aggressive tumor with an unfavorable prognosis, we aimed to characterize the PD-L1 expression in melanomas in association with T cell infiltrates because PD-1/PD-L1 blockade represents the target in treating melanoma strategy. (2) Methods: The immunohistochemical manual quantitative methods of PD-L1, CD4, and CD8 TILs were performed in melanoma tumor microenvironment cells. (3) Results: Most of the PD-L1 positive, expressing tumors, have a moderate score of CD4+ TILs and CD8+TILs (5-50% of tumor area) in tumoral melanoma environment cells. The PD-L1 expression in TILs was correlated with different degrees of lymphocytic infiltration described by the Clark system (X2 = 8.383, p = 0.020). PD-L1 expression was observed often in melanoma cases, with more than 2-4 mm of Breslow tumor thickness being the associated parameters (X2 = 9.933, p = 0.014). (4) Conclusions: PD-L1 expression represents a predictive biomarker with very good accuracy for discriminating the presence or absence of malign tumoral melanoma cells. PD-L1 expression was an independent predictor of good prognosis in patients with melanomas.

8.
Materials (Basel) ; 16(4)2023 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-36837374

RESUMEN

This article's objective is the synthesis of new composites based on thermoplastic polyurethane (TPU) and TiO2 nanowires (NWs) as free-standing films, highlighting their structural and optical properties. The free-standing TPU-TiO2 NW films were prepared by a wet chemical method accompanied by a thermal treatment at 100 °C for 1 h, followed by air-drying for 2 h. X-ray diffraction (XRD) studies indicated that the starting commercial TiO2 NW sample contains TiO2 tetragonal anatase (A), cubic Ti0.91O (C), and orthorhombic Ti2O3 (OR), as well as monoclinic H2Ti3O7 (M). In the presence of TPU, an increase in the ratio between the intensities of the diffraction peaks at 43.4° and 48° belonging to the C and A phases of titanium dioxide, respectively, is reported. The increase in the intensity of the peak at 43.4° is explained to be a consequence of the interaction of TiO2 NWs with PTU, which occurs when the formation of suboxides takes place. The variation in the ratio of the absorbance of the IR bands peaked at 765-771 cm-1 and 3304-3315 cm-1 from 4.68 to 4.21 and 3.83 for TPU and the TPU-TiO2 NW composites, respectively, with TiO2 NW concentration equal to 2 wt.% and 17 wt.%, indicated a decrease in the higher-order aggregates of TPU with a simultaneous increase in the hydrogen bonds established between the amide groups of TPU and the oxygen atoms of TiO2 NWs. The decrease in the ratio of the intensity of the Raman lines peaked at 658 cm-1 and 635 cm-1, which were assigned to the vibrational modes Eg in TiO2 A and Eg in H2Ti3O7 (ITiO2-A/IH2Ti3O7), respectively, from 3.45 in TiO2 NWs to 0.94-0.96 in the TPU-TiO2 NW composites, which indicates that the adsorption of TPU onto TiO2 NWs involves an exchange reaction of TPU in the presence of TiO2 NWs, followed by the formation of new hydrogen bonds between the -NH- of the amide group and the oxygen atoms of TixO2x-mn, Ti2O3, and Ti0.91O. Photoluminescence (PL) studies highlighted a gradual decrease in the intensity of the TPU emission band, which is situated in the spectral range 380-650 nm, in the presence of TiO2 NW. After increasing the TiO2 NW concentration in the TPU-TiO2 NW composite mass from 0 wt.% to 2 wt.% and 17 wt.%, respectively, a change in the binding angle of the TPU onto the TiO2 NW surface from 12.6° to 32° and 45.9°, respectively, took place.

9.
J Environ Manage ; 331: 117260, 2023 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-36681029

RESUMEN

The scope of this study consists of setting up of an integrated cost-effective sampling & laboratory analyses procedure which delineates sampling, sub-sampling and analytical uncertainties in case of fine-grained extractive waste deposits. This procedure is designed to support the decision makers towards fine-grained waste deposits upcycling and land reclamation. This procedure consists of a balanced replicated sampling design (BRSD) coupled with a three split levels ANOVA data processing. The paper provides the readership with the mathematical backgrounds of the three split level ANOVA analysis (3L-ANOVA) and an Excel algorithm for its implementation. Also, the paper presents an example of implementation of the developed methods in the case of a Romanian iron ore tailings (IOT) old pond. The findings of the paper consist of: a) argues, based on OM, SEM-EDS, XRFS and XRD observations, that classical TOS is ineffective for fine-grained waste deposits; b) BRSD in conjunction with 3L-ANOVA analysis is the only approach fit for reliable characterization of the fine-grained stockpiles; c) sampling uncertainty is the critical factor of the uncertainty budget of the analyte concentration; d) Lilliefors approach is adequate for the hypothesis testing where or not the measurand is normal distributed; e) The outcomes of the BRDSD&3L-ANOVA investigations carried on Teliuc tailings, estimated at circa 5.5* 106 m3, consist mainly of mineral quantification at lot level i.e. quartz ∼54% (±7%), hematite ∼15% (±3%), calcite ∼11% (±3%), MgO 3% (±1%), Al2O3 9% (±2%). The concentrations of some CRMs like Ti, V, Ba, Y, W were found at ACE limits and their associated relative expanded uncertainties overpass 50%. Thus, the expanded uncertainties clearly depict the reliability of acquired data for the decision makers regarding waste valorization. f) The IOT into Teliuc can be upcycled as minerals for cement and ceramic industries as well as for geopolymer manufacture. Also, IOT can be downcycles as filler in road construction and mine closure. Finally, the Teliuc yard can be rehabilitated with zero-waste left behind. The data exactness provided by this procedure can be increased to any desirable level through increasing the number of collected items, but the cost of sampling and analyses increases proportionally. In such circumstances, the posted approach can be tailored at the stakeholder request as to safely underpin the decision to turn finegrained by-products into valuable secondary resources, facilitating a greater circularity of the mining industry.


Asunto(s)
Compuestos de Hierro , Estanques , Rumanía , Reproducibilidad de los Resultados , Minerales/análisis
10.
Int J Mol Sci ; 23(23)2022 Nov 27.
Artículo en Inglés | MEDLINE | ID: mdl-36499160

RESUMEN

Oxidative stress is associated with aging, cancers, and numerous metabolic and chronic disorders, and phenolic compounds are well known for their health-promoting role due to their free-radical scavenging activity. These phytochemicals could also exhibit pro-oxidant effects. Due to its bioactive phenolic secondary metabolites, Usnea barbata (L.) Weber ex. F.H. Wigg (U. barbata) displays anticancer and antioxidant activities and has been used as a phytomedicine for thousands of years. The present work aims to analyze the properties of U. barbata extract in canola oil (UBO). The UBO cytotoxicity on oral squamous cell carcinoma (OSCC) CLS-354 cell line and blood cell cultures was explored through complex flow cytometry analyses regarding apoptosis, reactive oxygen species (ROS) levels, the enzymatic activity of caspase 3/7, cell cycle, nuclear shrinkage (NS), autophagy (A), and synthesis of deoxyribonucleic acid (DNA). All these studies were concomitantly performed on canola oil (CNO) to evidence the interaction of lichen metabolites with the constituents of this green solvent used for extraction. The obtained data evidenced that UBO inhibited CLS-354 oral cancer cell proliferation through ROS generation (316.67 × 104), determining higher levels of nuclear shrinkage (40.12%), cell cycle arrest in G0/G1 (92.51%; G0 is the differentiation phase, while during G1 phase occurs preparation for cell division), DNA fragmentation (2.97%), and autophagy (62.98%) than in blood cells. At a substantially higher ROS level in blood cells (5250.00 × 104), the processes that lead to cell death-NS (30.05%), cell cycle arrest in G0/G1 (86.30%), DNA fragmentation (0.72%), and autophagy (39.37%)-are considerably lower than in CLS-354 oral cancer cells. Our work reveals the ROS-mediated anticancer potential of UBO through DNA damage and autophagy. Moreover, the present study suggests that UBO pharmacological potential could result from the synergism between lichen secondary metabolites and canola oil phytoconstituents.


Asunto(s)
Carcinoma de Células Escamosas , Neoplasias de Cabeza y Cuello , Neoplasias de la Boca , Usnea , Humanos , Neoplasias de la Boca/tratamiento farmacológico , Neoplasias de la Boca/metabolismo , Usnea/química , Usnea/metabolismo , Carcinoma de Células Escamosas/tratamiento farmacológico , Carcinoma de Células Escamosas de Cabeza y Cuello , Aceite de Brassica napus/farmacología , Autofagia , Daño del ADN , Especies Reactivas de Oxígeno/metabolismo , Apoptosis , Extractos Vegetales/farmacología , Fenoles/farmacología , ADN/farmacología , Línea Celular Tumoral
11.
Nanomaterials (Basel) ; 12(21)2022 Nov 04.
Artículo en Inglés | MEDLINE | ID: mdl-36364671

RESUMEN

To obtain highly homogeneous cobalt-nickel aluminate spinels with small crystallite sizes, CoNiAl alloy thin films were primarily deposited using Laser-induced Thermionic Vacuum Arc (LTVA) as a versatile method for performing processing of multiple materials, such as alloy/composite thin films, at a nanometric scale. Following thermal annealing in air, the CoNiAl metallic thin films were transformed into ceramic oxidic (Co,Ni)Al2O4 with controlled composition and crystallinity suitable for thermal stability and chemical resistance devices. Structural analysis revealed the formation of (Co,Ni)Al2O4 from the amorphous CoNiAl alloys. The mean crystallite size of the spinels was around 15 nm. Thermal annealing induces a densification process, increasing the film thickness together with the migration process of the aluminum toward the surface of the samples. The sheet resistance changed drastically from 200-240 Ω/sq to more than 106 Ω/sq, revealing a step-by-step conversion of the metallic character of the thin film to a dielectric oxidic structure. These cermet materials can be used as inert anodes for the solid oxide fuel cells (SOFCs), which require not only high stability with respect to oxidizing gases such as oxygen, but also good electrical conductivity. These combination metal-ceramics are known as bi-layer anodes. By controlling the crystallite size and the interplay between the oxide/metal composite, a balance between stability and electrical conductivity can be achieved.

12.
Foods ; 11(22)2022 Nov 16.
Artículo en Inglés | MEDLINE | ID: mdl-36429258

RESUMEN

The current consumption trends of plant based functional products have encouraged researchers and industry to study the production of protein enriched bakery products as a source of protein. In the context of the circular economy, the press cakes remaining after extraction of juices/oil from plants such as sea buckthorn or hemp can be valorized as they are rich in proteins, fibers and many bioactive compounds. Their use in bread making is a good solution to enrich the nutritional value of bread. Pea protein concentrate, hemp and sea buckthorn ingredients from press cakes by-products were added to whole wheat flour in different percentages and combinations (2% pea protein concentrate; 1% pea + 2% sea buckthorn ingredients; 1% pea + 2% hemp ingredients). Bread samples were obtained through three technological methods: one phase baking process (dough), two phases (sponge and dough) and one phase with dried sourdough added directly into the dough. A control sample (100% wheat whole flour) was considered. The mixtures of whole wheat flour and plant protein ingredients were rheologically tested. The bread samples were physicochemically analyzed (protein, fat, carbohydrates, energy value) and sensory characteristics were evaluated (texture, color and overall acceptability). The changes in the physicochemical characteristics, rheology behavior, microstructure and sensory quality were evaluated and compared. The energy from protein varied from 17.26 to 19.34% which means that all the samples can be considered "a source of protein". Hardness decreased in samples with sponge and dried sourdough which reflect the importance of technology in keeping the freshness of the product. The most appreciated were the samples with pea protein concentrate, with hemp ingredient obtained through an indirect bread making process and the sample with sea buckthorn ingredient prepared through a direct bread making process using dried sourdough.

13.
Antioxidants (Basel) ; 11(10)2022 Sep 28.
Artículo en Inglés | MEDLINE | ID: mdl-36290658

RESUMEN

Oral squamous cell carcinoma (OSCC) is the most frequent oral malignancy, with a high death rate and an inadequate response to conventional chemotherapeutic drugs. Medical research explores plant extracts' properties to obtain potential nanomaterial-based anticancer drugs. The present study aims to formulate, develop, and characterize mucoadhesive oral films loaded with Usnea barbata (L.) dry acetone extract (F-UBA) and to investigate their anticancer potential for possible use in oral cancer therapy. U. barbata dry acetone extract (UBA) was solubilized in ethanol: isopropanol mixture and loaded in a formulation containing hydroxypropyl methylcellulose (HPMC) K100 and polyethylene glycol 400 (PEG 400). The UBA influence on the F-UBA pharmaceutical characteristics was evidenced compared with the references, i.e., mucoadhesive oral films containing suitable excipients but no active ingredient loaded. Both films were subjected to a complex analysis using standard methods to evaluate their suitability for topical administration on the oral mucosa. Physico-chemical and structural characterization was achieved by Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), thermogravimetric analysis (TGA), scanning electron microscopy (SEM), and atomic force microscopy (AFM). Pharmacotechnical evaluation (consisting of the measurement of specific parameters: weight uniformity, thickness, folding endurance, tensile strength, elongation, moisture content, pH, disintegration time, swelling rate, and ex vivo mucoadhesion time) proved that F-UBAs are suitable for oral mucosal administration. The brine shrimp lethality (BSL) assay was the F-UBA cytotoxicity prescreen. Cellular oxidative stress, caspase 3/7 activity, nuclear condensation, lysosomal activity, and DNA synthesis induced by F-UBA in blood cell cultures and oral epithelial squamous cell carcinoma (CLS-354) cell line were investigated through complex flow cytometry analyses. Moreover, F-UBA influence on both cell type division and proliferation was determined. Finally, using the resazurin-based 96-well plate microdilution method, the F-UBA antimicrobial potential was explored against Staphylococcus aureus ATCC 25923, Pseudomonas aeruginosa ATCC 27353, Candida albicans ATCC 10231, and Candida parapsilosis ATCC 22019. The results revealed that each UBA-loaded film contains 175 µg dry extract with a usnic acid (UA) content of 42.32 µg. F-UBAs are very thin (0.060 ± 0.002 mm), report a neutral pH (7.01 ± 0.01), a disintegration time of 146 ± 5.09 s, and an ex vivo mucoadhesion time of 85 ± 2.33 min, and they show a swelling ratio after 6 h of 211 ± 4.31%. They are suitable for topical administration on the oral mucosa. Like UA, they act on CLS-354 tumor cells, considerably increasing cellular oxidative stress, nuclear condensation, and autophagy and inducing cell cycle arrest in G0/G1. The F-UBAs inhibited the bacterial and fungal strains in a dose-dependent manner; they showed similar effects on both Candida sp. and higher inhibitory activity against P. aeruginosa than S. aureus. All these properties lead to considering the UBA-loaded mucoadhesive oral films suitable for potential application as a complementary therapy in OSCC.

14.
Antioxidants (Basel) ; 11(9)2022 Sep 13.
Artículo en Inglés | MEDLINE | ID: mdl-36139875

RESUMEN

The oral cavity's common pathologies are tooth decay, periodontal disease, and oral cancer; oral squamous cell carcinoma (OSCC) is the most frequent oral malignancy, with a high mortality rate. Our study aims to formulate, develop, characterize, and pharmacologically investigate the oral mucoadhesive patches (F-UBE-HPMC) loaded with Usnea barbata (L.) F.H. Wigg dry ethanol extract (UBE), using HPMC K100 as a film-forming polymer. Each patch contains 312 µg UBE, with a total phenolic content (TPC) of 178.849 µg and 33.924 µg usnic acid. Scanning electron microscopy (SEM) and atomic force microscopy (AFM) were performed for their morphological characterization, followed by Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), and thermogravimetric analysis (TGA). Pharmacotechnical evaluation involved the measurement of the specific parameters for mucoadhesive oral patches as follows: weight uniformity, thickness, folding endurance, tensile strength, elongation, moisture content, pH, disintegration time, swelling rate, and ex vivo mucoadhesion time. Thus, each F-UBE-HPMC has 104 ± 4.31 mg, a pH = 7.05 ± 0.04, a disintegration time of 130 ± 4.14 s, a swelling ratio of 272 ± 6.31% after 6 h, and a mucoadhesion time of 102 ± 3.22 min. Then, F-UBE-HPMCs pharmacological effects were investigated using brine shrimp lethality assay (BSL assay) as a cytotoxicity prescreening test, followed by complex flow cytometry analyses on blood cell cultures and oral epithelial squamous cell carcinoma CLS-354 cell line. The results revealed significant anticancer effects by considerably increasing oxidative stress and blocking DNA synthesis in CLS-354 cancer cells. The antimicrobial potential against Staphylococcus aureus ATCC 25923, Pseudomonas aeruginosa ATCC 27353, Candida albicans ATCC 10231, and Candida parapsilosis ATCC 22019 was assessed by a Resazurin-based 96-well plate microdilution method. The patches moderately inhibited both bacteria strains growing and displayed a significant antifungal effect, higher on C. albicans than on C. parapsilosis. All these properties lead to considering F-UBE-HPMC suitable for oral disease prevention and therapy.

15.
Pharmaceutics ; 14(9)2022 Aug 28.
Artículo en Inglés | MEDLINE | ID: mdl-36145557

RESUMEN

Medical research explores plant extracts' properties to obtain potential anticancer drugs. The present study aims to formulate, develop, and characterize the bioadhesive oral films containing Usnea barbata (L.) dry ethanol extract (F-UBE-HPC) and to investigate their anticancer potential for possible use in oral cancer therapy. The physicochemical and morphological properties of the bioadhesive oral films were analyzed through Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), Atomic Force Microscopy (AFM), thermogravimetric analysis (TG), and X-ray diffraction techniques. Pharmacotechnical evaluation (consisting of the measurement of the specific parameters: weight uniformity, thickness, folding endurance, tensile strength, elongation, moisture content, pH, disintegration time, swelling rate, and ex vivo mucoadhesion time) completed the bioadhesive films' analysis. Next, oxidative stress, caspase 3/7 activity, nuclear condensation, lysosomal activity, and DNA synthesis induced by F-UBE-HPC in normal blood cell cultures and oral epithelial squamous cell carcinoma (CLS-354) cell line and its influence on both cell types' division and proliferation was evaluated. The results reveal that each F-UBE-HPC contains 0.330 mg dry extract with a usnic acid (UA) content of 0.036 mg. The bioadhesive oral films are thin (0.093 ± 0.002 mm), reveal a neutral pH (7.10 ± 0.02), a disintegration time of 118 ± 3.16 s, an ex vivo bioadhesion time of 98 ± 3.58 min, and show a swelling ratio after 6 h of 289 ± 5.82%, being suitable for application on the oral mucosa. They displayed in vitro anticancer activity on CLS-354 tumor cells. By considerably increasing cellular oxidative stress and caspase 3/7 activity, they triggered apoptotic processes in oral cancer cells, inducing high levels of nuclear condensation and lysosomal activity, cell cycle arrest in G0/G1, and blocking DNA synthesis. All these properties lead to considering the UBE-loaded bioadhesive oral films suitable for potential application as a complementary therapy in oral cancer.

16.
Nanomaterials (Basel) ; 12(16)2022 Aug 19.
Artículo en Inglés | MEDLINE | ID: mdl-36014723

RESUMEN

ZnO nanostructures were electrochemically synthesized on Cu and on chemical vapor deposited (CVD)-graphene/Cu electrodes. The deposition was performed at different electrode potentials ranging from -0.8 to -1.2 V, employing a zinc nitrate bath, and using voltametric and chronoamperometric techniques. The effects of the electrode nature and of the working electrode potential on the structural, morphological, and optical properties of the ZnO structures were investigated. It was found that all the samples crystallize in hexagonal wurtzite structure with a preferential orientation along the c-axis. Scanning electron microscopy (SEM) images confirm that the presence of a graphene covered electrode led to the formation of ZnO nanowires with a smaller diameter compared with the deposition directly on copper surface. The photoluminescence (PL) measurements revealed that the ZnO nanowires grown on graphene/Cu exhibit stronger emission compared to the nanowires grown on Cu. The obtained results add another possibility of tailoring the properties of such nanostructured films according to the specific functionality required.

17.
Antioxidants (Basel) ; 11(8)2022 Aug 19.
Artículo en Inglés | MEDLINE | ID: mdl-36009320

RESUMEN

Usnea lichens are known for their beneficial pharmacological effects with potential applications in oral medicine. This study aims to investigate the extract of Usnea barbata (L.) Weber ex F.H. Wigg from the Calimani Mountains in canola oil as an oral pharmaceutical formulation. In the present work, bioadhesive oral films (F-UBO) with U. barbata extract in canola oil (UBO) were formulated, characterized, and evaluated, evidencing their pharmacological potential. The UBO-loaded films were analyzed using standard methods regarding physicochemical and pharmacotechnical characteristics to verify their suitability for topical administration on the oral mucosa. F-UBO suitability confirmation allowed for the investigation of antimicrobial and anticancer potential. The antimicrobial properties against Staphylococcus aureus ATCC 25923, Pseudomonas aeruginosa ATCC 27353, Candida albicans ATCC 10231, and Candida parapsilosis ATCC 22019 were evaluated by a resazurin-based 96-well plate microdilution method. The brine shrimp lethality assay (BSL assay) was the animal model cytotoxicity prescreen, followed by flow cytometry analyses on normal blood cells and oral epithelial squamous cell carcinoma CLS-354 cell line, determining cellular apoptosis, caspase-3/7 activity, nuclear condensation and lysosomal activity, oxidative stress, cell cycle, and cell proliferation. The results indicate that a UBO-loaded bioadhesive film's weight is 63 ± 1.79 mg. It contains 315 µg UBO, has a pH = 6.97 ± 0.01, a disintegration time of 124 ± 3.67 s, and a bioadhesion time of 86 ± 4.12 min, being suitable for topical administration on the oral mucosa. F-UBO showed moderate dose-dependent inhibitory effects on the growth of both bacterial and fungal strains. Moreover, in CLS-354 tumor cells, F-UBO increased oxidative stress, diminished DNA synthesis, and induced cell cycle arrest in G0/G1. All these properties led to considering UBO-loaded bioadhesive oral films as a suitable phytotherapeutic formulation with potential application in oral infections and neoplasia.

18.
Diagnostics (Basel) ; 12(8)2022 Aug 17.
Artículo en Inglés | MEDLINE | ID: mdl-36010343

RESUMEN

(1) Background: The treatment of dental cavities and restoration of tooth shape requires specialized materials with specific clinical properties, including being easy to model, light-cured, having a natural color, reduced shrinkage, a hardness similar to hydroxyapatite, and no leakage. The dimensional stability of resin composite materials is affected by polymerization shrinkage, degree of conversion (number of π carbon bonds converted into σ ones), thermal contraction and expansion, and interactions with an aqueous environment. (2) Methods: The materials used in our investigation were two composite resins with similar polymer matrices, but different filler (micro/nano filler). To evaluate the properties of samples, we employed the pycnometer technique (pycnometer from Paul Marienfeld Gmbh, Lauda-Königshofen, Germany), RAMAN spectroscopy technique (MiniRam Equipment from B&W Tek Inc., Plainsboro Township, NJ, USA; 785 nm laser source), SEM and EDX (FEI Inspect S.). (3) Results: The size of the filler plays an important role in the polymerization: for the pycnometric results, the larger particle filler (Sample 1) seems to undergo a rapid polymerization during the 45 s curing, while the nanoparticle filer (Sample 2) needs additional curing time to fully polymerize. This is related to a much larger porosity, as proved by SEM images. The lower degree of conversion, as obtained by Raman spectroscopy, in the same geometry means that the same volume is probed for both samples, but Sample 1 is more porous, which means less amount of polymer is probed for Sample 1. (4) Conclusions: For the two composites, we obtained a degree of conversion of 59% for Sample 1 and 93% for Sample 2, after 45 s of curing.

19.
Materials (Basel) ; 15(14)2022 Jul 18.
Artículo en Inglés | MEDLINE | ID: mdl-35888469

RESUMEN

The consumer market requests infrared (IR) optical components, made of relatively abundant and environmentally friendly materials, to be integrated or attached to smartphones. For this purpose, three new chalcogenides samples, namely Ge23.3Zn30.0Se46.7 (d_GZSe-1), Ge26.7Zn20.0Se53.3 (d_GZSe-2) and Ba4.0Ge12.0Zn17.0Se59.0I8.0 (d_GZSe-3) were obtained by mechanical alloying and processed by spark plasma sintering into dense bulk disks. Obtaining a completely amorphous and homogeneous material proved to be difficult. d_GZSe-2 and d_GZSe-3 are glass-ceramics with the amount of the amorphous phase being 19.7 and 51.4 wt. %, while d_GZSe-1 is fully polycrystalline. Doping with barium and iodine preserves the amorphous phase formed by milling and lowers the sintering temperature from 350 °C to 200 °C. The main crystalline phase in all of the prepared samples is cubic ZnSe or cubic Zn0.5Ge0.25Se, while in d_GZSe-3 the amorphous phase contains GeSe4 clusters. The color of the first two sintered samples is black (the band gap values are 0.42 and 0.79 eV), while d_GZSe-3 is red (Eg is 1.37 eV) and is transparent in IR domain. These results are promising for future research in IR materials and thin films.

20.
Medicine (Baltimore) ; 101(30): e29701, 2022 Jul 29.
Artículo en Inglés | MEDLINE | ID: mdl-35905206

RESUMEN

The molecular basis of the evaluation of children suspected of having disorders of surfactant proteins is still under discussion. In this study, we aimed to describe the morphological characteristics and to evaluate the immunohistochemical expression of surfactant proteins (surfactant protein A [SPA], surfactant protein B, and pro-surfactant protein C) in the preterm twins that deceased due to unexplained respiratory distress syndrome (n = 12). Results showed statistically significant positive correlations between surfactant protein B expressions and pulmonary hemorrhage (ρ = 0.678; P < .05), SPA levels, and Apgar score (ρ = 0.605; P < .05) and also expressions of SPA and bronchopneumonia (ρ = 0.695; P < .05). The fetuses and neonates of the same gestational age showed differences among surfactant proteins regarding the immunostaining expression. Our data evidence a marked interindividual variability in the expression of all 3 surfactant proteins among the cases analyzed (n = 12), suggesting the intervention of some individual and epigenetic factors during gestation that might influence surfactant protein production and consequently survival rate.


Asunto(s)
Surfactantes Pulmonares , Síndrome de Dificultad Respiratoria del Recién Nacido , Niño , Edad Gestacional , Humanos , Recién Nacido , Proteína A Asociada a Surfactante Pulmonar , Surfactantes Pulmonares/uso terapéutico , Síndrome de Dificultad Respiratoria del Recién Nacido/tratamiento farmacológico , Rumanía , Tensoactivos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...